RAS Early Career Poster Exhibition

Royal Astronomical Society From GX 3+1 through *AstroSat*

Ankur Nath¹, Biplob Sarkar², Jayashree Roy³, Ranjeev Misra³

- 1 The ICFAI University, Kamalghat-799210, Tripura, India
- 2 Department of Applied Sciences, Tezpur University, Napaam-784028, Tezpur, Assam, India
- 3 Inter University Center for Astronomy and Astrophysics, Ganeshkhind, Pune

I. THE SOURCE

1. GX 3+1 (Atoll source) - Observed on April 29-30, 2018 by

AstroSat's LAXPC* and SXT** onboard.

2. Mass transfer onto the Neutron Star (NS) from the companion star through Roche-Lobe overflow.

3. Ignition of H/He on NS surface produces flash type rapid Bursts.

A Schematic illustration of a Thermonuclear burst model from a Neutron Star with its corresponding light curve^[1].

II. THE MOTIVATION

- 1. No AstroSat report published yet on GX 3+1.
- 2. GX 3+1 is known to display rapid bursts.
- 3. Burst phenomena is helpful in determining NS properties

4. Instruments *AstroSat*/SXT can observe soft X-rays (0.3-8 keV) and *AstroSat*/LAXPC has a microsecond time resolution to observe rapid bursts

METHODS

• Downloaded the relevant level 1 archival data sets from AstroBrowse. The response and background files used for SXT & LAXPC spectral fitting in XSPEC are made available by instrument team.

4. THE SPECTRAL ANALYSIS

- SXT (0.8-8 keV) and LAXPC 20 (4-25 keV) spectra are divided into the Preburst (~ 840 s) and Burst region (~ 17 s).
- Model TBABS(NTHCOMP+DISKBB+GAUSSIAN) to fit the preburst (fig. d).
- The same model + **BLACKBODY** overfits the burst spectra. Hence remodelling is done with two models as follows, in 4-16 keV energy band
 - a) M-1: TBABS(CUTOFFPL+BBODYRAD) (fig. e).
 - b) M-2: TBABS(NTHCOMP+BBODYRAD) (fig. f)
- We find that the removal of **DISKBB** makes it a better fit.

NTHCOMP

- Thermal Comptonizing Coronae expressed in terms of Electron temperature KT_e and Spectral Index Gamma Γ .
- Comptonized soft photons from outer disk.
- kT_e kept frozen at the maximum (1000 keV).

DISKBB

- Multicolored accretion disk expresed in terms of inner disk temperature Kt_{in} and Normalisation N_d .
- N_d^{m} \longrightarrow Apparent Inner Disk Radius \mathbf{r}_{in} .
- r_{in} times the spectral hardening factor \rightarrow Realistic radius R_{in} (km).

BBODYRAD

- A blackbody spectrum expressed in terms of the temperature kT_{bb} and a Normalization N_{bb} proportional to the surface area.
- N_{bb} \longrightarrow NS radius (km).

• Softwares used are - LaxpcSoft (v-May 19,2018)^[2], SXT pipeline (v-ASISXTlevel2-1.4b), HeaSoft ftools (**Xspec**, **Xronos**, **Xselect**), **SaoImage ds9**.

III. TEMPORAL ANALYSIS

- LAXPC counter 20 detects one Type-1 Flash burst. The Burst duration is ~ 15 mins- exponential decay of the count rate
- SXT misses the burst time by ~ 2 mins for unknown reasons.
- The Hardness vs Intensity Diagram (HID) suggests the **soft Banana State.** A gentle positive correlation is seen in the HID.
- The Burst is resolved into different energy bands. The 5-8 keV band is the brightest

Time(s)

Counts/s

1000

Fig a: The simultaneous light curves from SXT (top panel), energy band 0.4-8 keV and LAXPC 20 (bottom panel), energy band 3.0-80 keV for a minimum time binning of 2.377

Fig b: The energy resolved burst light curve for a binning of 0.16 s. The 5-8 keV energy band **(red)** is the brightest.

Fig c: The HID from the LAXPC 20 light curve for a bin time 80 s. Hardness ratio of the photon count rate selected as (15-25 keV)/(3-5 keV).

6. Compararison with Published GX 3+1 reports

- The Neutral Hydrogen column attains a value 1.4 in 10²² cm⁻² units which is consistent with den. Hartog, et al. (2003).
- Joint fit (fig. d) obtains a Γ= 2.5 ± 0.3 consistent with ~2.7 reported in Pintore, et al. (2015).
- The N_d value 16.16 ± 1.6 is close to Ludlam, et al. (2019) for a *NuSTAR* data.
- The NS radius values consistent with Kuulkers & van der Klis (2000).
 Their reported value was 4.5 km for a

source distance 5 kpc.

5. THE RESULTS & DISCUSSIONS

- The disk R_{in} value is calculated to be ~ 7.54 ± 0.4 km for a taken source distance 6.1 kpc and 28° disk inclination.
- Inner disk blackbody temperature obtained is 2.06 ± 0.1 keV.
- The blackbody temperature kT_{bb} obtained =1.61±0.04 keV which is close to 2 keV, confirming the Type-1 status of the burst.
- The calculated NS radius values are 6.7±0.3 and 6.8±0.3 km respectively for M-1 and M-2.
- LAXPC flux_{uabs} is higher than the SXT flux (from preburst fit).

References

1."Astrophysical explosions in stellar systems", Maurizio Falanga, Lec-07
2. Antia H.~M., et al., 2017, ApJS, 231, 10

Contact: ankurnath94@gmail.com